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Abstract

The present article discusses a new principle of active vibration control of lightly damped flexible structural members.

The basic scheme mimics the working principle of impact dampers. Control efforts are in the form of impulses generated

by expanding and contracting a mass loaded lead zirconium titanate (PZT) stack actuator at suitable values of the states of

the system. Efficacy of the damper is demonstrated in mitigating free vibration, forced vibration and self-excited vibration

of a single-degree-of-freedom primary system. Effects of various parameters are studied to reveal the existence of optimum

control parameters in controlling free vibration. Finally, a dynamic control law is proposed to generate the hysteretic

control commands for expanding and contracting the actuator. The hysteretic part of the control command is generated by

a first-order nonlinear ordinary differential equation (ODE). The proposed scheme is thought to be useful for controlling

vibrations of a wide class of systems ranging from macro- to microscale applications like microelectromechanical systems

(MEMS), microrobots, and other micromachines, etc. If adaptively used, the damper can perform optimally without

requiring an explicit mathematical model of the system and the global dynamic information thereof.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Controlling unwanted vibrations of mechanical and structural components is always a significant research
area for engineers and scientists. Various active and passive devices have been theoretically studied and
implemented in practice. These devices include dynamic vibration neutralizers, pendulum absorbers,
autoparametric vibration absorbers, impact dampers, etc. Each of these devices has its relative merits and
demerits.

The major motivation of the present work comes from the principle of impact damper. Impact damper finds
prominent mentions in the literature mainly because of its simple constructional features and rich dynamic
characteristics. An impact damper consists of a loose or elastically suspended mass inside a properly designed
cavity in the primary vibrating body. A large number of research works have been reported on the design and
performance of impact dampers for controlling free and forced vibration of linear and nonlinear systems. Only
a few of the recent works along with some classic papers on impact dampers are cited here [1–21]. The most
effective dynamic mode of operation of an impact damper in controlling resonant vibration is the symmetric,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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two impacts per cycle motion. In this mode of motion, the secondary mass undergoes repeated collisions with
the primary mass each time the primary mass crosses its zero position (the static equilibrium configuration)
with the secondary mass moving in the direction opposite to the primary mass. As a result, impacts are
produced in the direction opposite to the velocity of the primary system. Depending upon the major source of
vibrational energy, attenuation is caused either by momentum transfer (between the primary and secondary
masses) or by energy dissipation during impacts.

Despite several advantages, such as simple constructional features, the use of passive impact damper is
limited due to its ineffectiveness in case of broadband excitations. This is because the motion with symmetric
two impacts per cycle is destabilized and thus, the impacts are not produced in the desired optimal fashion.
Moreover, the optimal design of a passive impact damper is highly sensitive to the model of the primary
system. Semi-active impact damper with on-line control algorithm has been proposed [22] to overcome these
limitations. The procedure uses a tunable impact damper with adjustable motion-limiting stops. The
secondary mass is made to undergo collisions against the stopper wall by adjusting its location at each zero-
crossing of the displacement of the primary mass, with the secondary mass moving in the direction opposite to
the primary mass.

Instead of using physical impacts, as in impact dampers, actively generated pulses can also be utilized for
controlling structural vibrations. Several open-loop vibration control methods using active pulses have been
developed [23–26] where pulses are generated to offset the response of the primary system when a suitable
response variable reaches a predefined threshold value.

The present article introduces a novel method of controlling vibration of lightly damped structural
members. The method is active in nature and mimics the basic principle of an impact damper. In impact
dampers, vibration is mitigated by a series of impact forces generated due to the repeated collisions of an
auxiliary mass with the primary system. However, the proposed scheme, instead of relying on physical
impacts, generates actively controlled impulses. As the basic controlling force is impulsive in nature, the
proposed damper may be rightly called as the ‘impulse damper’. Keeping in view the applicability of the
present method in a large class of systems ranging from macro- to microscales, a lead zirconium titanate (PZT)
stack actuator is considered for generating actively controlled impulsive forces. PZT actuator offers the unique
advantage of compactness of its design. However, other actuators like, MR/ER, magnetostictive, and
electromagnetic actuators, etc. are equally possible alternatives as permitted by the length scale of a particular
application.

2. Basic principle and mathematical model

The simplest configuration of the proposed system, considered herein, consists of a secondary mass attached to
the primary vibrating body with a PZT stack actuator. When the primary mass is displaced from its neutral
configuration with a positive velocity, the piezoelectric actuator expands suddenly. Because of this expansion, the
secondary mass exerts an inertial reaction impulse on the primary system in the direction opposite to the
movement of the primary mass. Similarly, when the primary mass is displaced from the equilibrium with a
negative velocity, an opposite reactive impulse force is generated due to a sudden contraction of the PZT actuator.

Mathematical model of the proposed impulse damper is depicted in Fig. 1. The primary system is modelled
as a single-degree-of-freedom spring–mass–damper (M, K, C) system. The damper mass m is attached to the
primary mass by a PZT stack actuator.

2.1. Mechanical model of the PZT actuator

According to Ref. [27], the mechanical behaviour of the PZT stack can be mathematically described by the
following transfer function:

PðsÞ ¼
X PðsÞ

FpðsÞ � FeðsÞ
¼

NpðsÞ

DpðsÞ
. (1)

The above equation describes the input–output relationship between the elongation Xp(s) of the actuator
and the mechanical load (that drives the actuator) Fp(s)�Fe(s) in the Laplace domain. Here, Fp represents the
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Fig. 1. Mathematical model of the proposed impulse damper.
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electrically transduced force of the actuator (same as the blocking fore, i.e., the actuator force at the zero
elongation condition of the actuator) and Fe is the external load acting on the actuator. Np(s) and Dp(s) are the
polynomials of the Laplace variable that determine the zeros and poles of the transfer function P(s),
respectively. Zeros and poles of the transfer characteristics of the PZT stack can be obtained from the
eigenmodes of the system as described below.

The dynamics of free vibration of a PZT stack actuator of length L is described by the following PDE [27]:

KpL
q2w

qy2
þ CpL

q3w
qy2 qt

¼
Mp

L

q2w
qt2

, (2a)

where w(y, t) denotes the instantaneous axial displacement of the PZT stack at an arbitrary axial location y.

Kp, Cp, and Mp are the axial static stiffness, viscous damping coefficient and the mass of the stack, respectively.
Using the principle of separation of variables, the free response of the stack can be written in the following

form:

wðy; tÞ ¼
X1
i¼1

Y iðyÞTiðtÞ. (2b)

Substituting Eq. (2) into Eq. (1), one finally obtains the following two ordinary differential equations
(ODEs):

Y 00i þ O2
i Y i ¼ 0, (3)

€Ti þ O2
i L2 Cp

Mp

_Ti þ O2
i L2 Kp

Mp

Ti ¼ 0, (4)

where ‘dash’ and ‘dot’ denote derivatives with respect to y and t, respectively. Oi is a constant, which can be
obtained as described below.

The general solution of Eq. (3) is given by

Y iðyÞ ¼ Ai cosðOiyÞ þ Bi sinðOiyÞ. (5)

The constants Ai and Bi can be determined from the boundary conditions. Free–free boundary conditions
are appropriate for the present problem. These boundary conditions are obtained by equating the normal
force at the two ends of the stack to zero, i.e.,

LKpY 0ið0ÞTiðtÞ þ LCpY 0ið0Þ
_TiðtÞ ¼ 0, (6)

LKpY 0iðLÞTiðtÞ þ LCpY 0iðLÞ
_TiðtÞ ¼ 0. (7)
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From Eqs. (6) and (7), one obtains the eigenmodes of the stack as

Y iðyÞ ¼ Ai cos
ipy

L

� �
; i ¼ 1; 2; . . . ;1. (8)

The condition corresponding to i ¼ 0 is excluded because this signifies the rigid-body translation of the
stack. Elongation of the stack for the ith mode is obtained as

DLi ¼ Y iðLÞ � Y ið0Þ, (9)

where Yi(L) and Yi(0) are the modal displacements of the stack at the primary-mass side and the secondary-
mass side of the actuator, respectively. It may be noted that the modal elongations of the stack are zero for the
even modes. Therefore, even modes provide the zeros and odd modes provide the poles of the transfer
characteristics P(s). Thus, from Eq. (4) one writes

NpðsÞ ¼
Y1
i¼1

Mp

O2
2iL

2
s2 þ Cpsþ Kp, (10)

DpðsÞ ¼
Y1
i¼1

Mp

O2
2i�1L

2
s2 þ Cpsþ Kp, (11)

where O2
i L2 ¼ ðip=LÞ2 for i ¼ 1; 2; . . . ;1.

For the configuration of the system considered here,

D1ðsÞX 1ðsÞ ¼ �F eðsÞ, (12)

D2ðsÞX 2ðsÞ ¼ F eðsÞ, (13)

where D1ðsÞ ¼Ms2 þ Csþ K and D2ðsÞ ¼ ms2.
From Eqs. (1), (12), and (13), the mechanical model of the PZT stack is obtained as

X pðsÞ

FpðsÞ
¼

NpðD1 þD2Þ

ðD1 þD2ÞDp þD1D2Np

. (14)

It may be noted that the blocking force Fp(s) of the actuator is directly proportional to the voltage applied
across the actuator. Therefore, Eq. (14) (multiplied by some constant) also represents the electromechanical
characteristics of the PZT stack.

Transfer characteristics of the full system shown in Fig. 1, with the displacement of the primary mass as the
output and the blocking force of the actuator as the input, is described by

X 1ðsÞ

FpðsÞ
¼

NpD2

ðD1 þD2ÞDp þD1D2Np

. (15)

Typical frequency response plots of the system for some realistic parameter values [27] are shown in Fig. 2.
It is observed from these plots that the higher modes of the PZT stack are heavily suppressed even for small
values of damping. Further suppression of the higher modes is possible by increasing the absorber mass m.

Thus, a single mode model of the absorber suffices to serve the purpose of analysing the efficacy of the
proposed damper.

2.2. Simplified mathematical model of the proposed system

In the foregoing, it is established that the PZT stack can be amply represented by a single mode
model for some realistic parameter values. Thus, the simplified mathematical model of the system
reads as

MX 001 þ CX 01 þ KX 1 ¼ CpX 0p � Fa, (16)

maX 002 ¼ �CpX 0p þ F a, (17)
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Fig. 2. Bode plot of the system characteristic given in Eq. (15). Cp ¼ 10 kg/s, Mp ¼ 0.1 kg, C ¼ 0, M ¼ 1.0 kg, Kp ¼ 4� 107N/m, and

K ¼ 4� 105N/m. _______, m ¼ 0.1; UUUUUUUUUUU, m ¼ 0.01.
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where Xp ¼ X2�X1 is the elongation, Fa is the force produced by the actuator and ma ¼ ðMp=p2Þ þm is the
effective absorber mass. Prime (0) denotes differentiation with respect to time t. Eq. (17) is rewritten as

maX 00p þ CpX 0p ¼ �maX 001 þ Fa. (18)

The electromechanical characteristics of the PZT actuator is given by the following equation:

Qp

X p

( )
¼

CPZT �nd33

nd33 � 1
Kp

" #
Vp

Fa

( )
, (19)

where Qp, Xp, Vp, Fa represent charge, elongation, voltage, and force in the PZT actuator, respectively. CPZT is
the effective capacitance of the PZT actuator, d33 is the piezoelectric constant of each wafer, and n is the total
number of wafers in the actuator. K�1p is the compliance of the actuator in short circuit condition and is given
by Kp ¼ EA=L, where E is the elastic modulus, A is the cross-sectional area, and L is the length of the
actuator.

From Eq. (19), the following expression for the actuator force is obtained:

Fa ¼ nd33KpVp � KpX p. (20)

Eqs. (16), (18), and (20) are normalized and rewritten as

1 0

rm rm

" #
€X
€Z

( )
þ

2x �hp

0 hp

" #
_X
_Z

( )
þ

1 �a

0 a

� �
X

Z

� �
¼

l2

1� l2
aV

�1

þ1

( )
, (21)

where

X ¼
X 1

x0
; Z ¼

X p

x0
; on ¼

ffiffiffiffiffiffi
K

M

r
; x ¼

C

2
ffiffiffiffiffiffiffiffiffi
KM
p ; rm ¼

ma

M
; hp ¼

Cp

Mon

; V ¼
V p

V ref
; V ref ¼

l2x0

ð1� l2Þnd33

,

a ¼
Kp

K
and l2 ¼

n2d2
33Kp

CPZT
.
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Dot ( � ) denotes differentiation with respect to the non-dimensional time t ¼ ont. Depending upon the
problem, the reference displacement x0 can be suitably defined.

2.3. Control laws

The basic principle of the impulse damper, as discussed earlier, is to generate suitable impulsive forces by
quickly expanding or contracting the PZT stack actuator. In the spirit of mimicking the most common
dynamic mode of operation of an impact damper, these impulses should be generated at the instants of
displacement zero-crossings of the primary mass. The stack is expanded by applying a suitable positive voltage
across the PZT stack at the instants of the displacement zero-crossings with a positive velocity and a negative
voltage is applied to contract the stack when the zero-crossings take place with a negative velocity. As the
inherent damping of PZT stacks is generally very weak, rapid expansions and contractions of the actuator
induce high-frequency transient oscillations. Such oscillations are highly undesirable and should be suppressed
by an artificial damping. Depending upon the given situation, extra damping may be generated by velocity
feedback or by some other electro-mechanical means, such as eddy-current damping. In what follows,
damping is generated by velocity feedback. Moreover, sudden expansion and contraction is detrimental to the
PZT stack that is generally very brittle. Therefore, expansion and contraction of the stack must allow certain
finite duration in order to avoid severe shock. With these facts in mind, two basic control laws are proposed
below:

2.3.1. Control law-I

The control law is mathematically recast as

V ¼ V1 þ V 2

V1 ¼ Vþ1 Hð _X Þ þ V�1 Hð� _X Þ

Vþ1 ¼
2Vm
� XHðX Þ � ðX � �ÞHðX � �Þ � �

2

	 

8 _X40

V�1 ¼
2Vm
� ðX þ �ÞHðX þ �Þ � XHðX Þ � �

2

	 

8 _Xo0

V2 ¼ �g dZ
dt

9>>>>>>>=
>>>>>>>;
. (22)

In Eq. (22), H( � ) represents the usual Heaviside’s step function that returns zero for semi-negative
arguments and unity for positive arguments. e is a positive (generally small) quantity that determines the zone
of expansion and contraction of the actuator. The control function has two parts, of which the second part V2

generates the damping force required to suppress unwanted transient oscillations of the stack. The first part of
the control function V1 is depicted in Fig. 3(a). Clearly, V1 is hysteretic in nature. It has two branches each for
a particular sign of the velocity of the primary system. The higher and the lower saturation limits of V1 are
+Vm and �Vm, respectively. It may be noted that Fig. 3(a) assumes that jX jmax4�. However, as discussed
Fig. 3. Control laws for the proposed impulse damper.
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elsewhere in the paper, when this control law is put into application, the maximum absolute displacement of
the primary mass may fall below e after some time and discontinuous jumps of the voltage are possible within
the zone jX jo�.

2.3.2. Control law-II

The first part of the control law-I being hysteretic in nature, the system response maybe oscillatory at the
steady state, as shown later. A functionally simple, hysteresis-free form of V1 is shown in Fig. 3(b) and is
mathematically described as

V1 ¼
Vm sgnðX Þ 8jX jX�=2;

2Vm
� X 8jX jo�=2:

(
(23)

It may be noted that in Eq. (23), the slope of the control function V1 during switching is the same as in the
control function (22). This allows one to compare the efficacies of the two control laws.

With the control functions defined above, system model (21) is rewritten as

1 0

rm rm

" #
€X
€Z

( )
þ

2x �he

0 he

" #
_X
_Z

( )
þ

1 �a

0 a

� �
X

Z

� �
¼

l2

1� l2
aV1

�1

þ1

( )
, (24)

where he ¼ hp þ l2=ð1� l2Þag.

3. Stability of the controlled system

It is generally difficult to prove the absolute stability of the system. An indirect method is adopted here to
analyse the dynamic characteristics of the system. It is sufficient to show that the system is dissipative and the
free response of the primary system decreases with time. As the system is autonomous, the simplest form of the
bounded instability of the equilibrium is identified with the existence of a stable limit cycle. Amplitude and
frequency of the limit cycles in the present system can be approximately estimated as described below.

Fig. 4 depicts the block diagram of the control model (24) in frequency domain. In Fig. 4, G(s), represents
the linear fourth-order transfer function between V1 and X where

b2 ¼ �
l2

1� l2
a; a3 ¼ 2xþ ðRm þ 1Þhe; a2 ¼ 1þ 2hexRm þ ð1þ RmÞa,

a1 ¼ ðhe þ 2xaÞRm; a0 ¼ aRm and Rm ¼
1

rm

.

It is assumed that a periodic solution exists and this is approximated by A sinðotÞ. Frequency domain
description of the nonlinear control function V1(X) can be given by the single input describing function (SIDF)
[28] for a single-harmonic input of the form X ¼ A sinðotÞ. Corresponding output of the nonlinear block is
described as V 1 ¼ V̂ 0 sinðotþ fÞ. The complex describing function N of the nonlinear block is defined as

N ¼
V̂ 0

A
¼

1

pA

Z 2p

0

V 1ðA sin yÞðsin yþ j cos yÞdy ¼¼ NrðAÞ þ jNiðAÞ, (25)

where j ¼
ffiffiffiffiffiffiffi
�1
p

. Nr(A) and Ni(A) are real-valued functions of A.
Fig. 4. Control model of impulse damper in frequency domain.
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For the multivalued function V1 given in Eq. (22), expressions for the SIDF can be obtained as

NiðAÞ ¼ �
D

pA2
,

D ¼
2�Vm; AX�;

2�V m �
2Vm
� ð�� VmÞ

2; Ao�:

(
ð26Þ

NrðAÞ ¼

Vm
� ; Ao�

1
2pA

R 2p
0
fVþ1 ðA sin yÞ þ V�1 ðA sin yÞgðsin yÞdy ¼ 2Vm

�p r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

þ sin�1ðrÞ
n o

; AX�
:

8><
>:

r ¼
�

A
p1. ð27Þ

It may be noted that for the control function (23), Ni(A) ¼ 0 and hence N(A) is a real-valued function.
The amplitude and frequency of the limit cycle can be estimated from the following equation:

GðjoÞNðAÞ ¼ 1. (28)

Thus, the existence of a limit cycle can be graphically confirmed by the existence of a point of intersection of
the Nyquist plot G(jo) with the inverse SIDF plot N�1(A) in the complex plane and the corresponding values
of o and A, at the point of intersection, are the approximate estimates of the frequency and amplitude of the
limit cycle. The estimated limit cycle is stable if the inverse SIDF plot crosses the Nyquist plot from right to
left, as A increases, viewed along the direction of increasing o [28].

The Nyquist plot of the linear part of the control system is shown in Fig. 5 for some typical
parameter values. A zoomed view of the Nyquist plot near the origin is shown in inset-1. Intersection
of the inverse SIDF, for the control law-I, with the Nyquist plot is depicted in inset-2. The intersection
confirms the existence and stability of a limit cycle. There exists only a single point of intersection for
a wide parameter region studied. Therefore, the system response approaches a stable limit cycle at the
steady state. Fig. 6 shows the variation of the amplitude of the limit cycle with Vm for different values
of he. From Fig. 6, it is observed that the limit cycle amplitude is in the order of e and increases with Vm and
decreasing he. Therefore, free vibration, initiated by a large perturbation (be), ultimately settles down to a low
amplitude oscillation of O(e). Thus, the system response is decreasing and bounded for some parameter values.
Existence of limit cycle oscillations is also confirmed by numerical simulations as shown in Fig. 7. It is
observed that the frequency of the limit cycle is much higher than the natural frequency of the primary system.
Even though, the amplitude of the residual oscillation of the primary system may be within the permissible
value for some applications, such high-frequency oscillation may inflict damage to the actuator or excite
higher-order modes of the primary system. Therefore, this high-frequency residual vibration must be
eliminated from the system. This can be achieved in number of ways; one is to just switch off the actuator
when the measured velocity at the zero-crossing goes down below a permissible threshold. Other useful
methods are discussed below.

It may be noted that for the control law-II, the inverse SIDF plot is the entire positive real axis. Thus, the
intersection of the SIDF plot with the Nyquist plot is possible only at the origin. Therefore, the control law-II
renders the equilibrium attracting and hence stable.

3.1. Modified control law-I

With the objective of eliminating limit cycle oscillations in the system response, a slight modification of the
control law-I is proposed below:

V1 ¼ SatðV 11;V mÞ,

V 11 ¼
V 0 þ

2Vm
� X 8X _X40; jX jo�;

V0 otherwise;

(
ð29Þ
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Fig. 6. Variation of the limit cycle amplitude with Vm. rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, and x ¼ 0.

Fig. 5. Nyquist plot of the control system. he ¼ 5.0, Vm ¼ 1, rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, and x ¼ 0.

S. Chatterjee / Journal of Sound and Vibration 312 (2008) 584–605592
where Sat(u, v) represents saturation function that limits the value of u between 7v. V0 is the discrete variable
updated to the value of V11 at each falling/rising edge of the trigger signal:

S ¼ HðX _X ð�� jX jÞÞ. (30)
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Fig. 8. Variation of control signal V1 with displacement X. Vm ¼ 1.0, e ¼ 0.2, X ¼ e�0:01t sinðtÞ: (a) Control law-I and (b) modified

control law-I.

Fig. 7. Simulation result of free vibration with impulse damper with control law-I. rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0, he ¼ 25.0,

and Vm ¼ 3.0.

S. Chatterjee / Journal of Sound and Vibration 312 (2008) 584–605 593
Variations of the control signal V1 with X, according to the control law-I and its modified version, are
illustrated in Figs. 8(a) and (b), respectively. These plots are generated for an exponentially damped sinusoidal
displacement X. Existence of the limit cycle oscillation in the system with the control law-I is ascribed to the
persistence of the same maximum level (Vm) of the control signal V1 even when the amplitude of X comes
down below e. This leads to the discontinuous jumps of the signal level V1 at the peak values of X below e. As
mentioned earlier, Figs. 3(a) and 8(a) are different only in the respect that the discontinuous jumps of the
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control force within the zone jX jo� are incorporated in Fig. 8(a). Obviously, for jX jX�, the modified control
law-I is equivalent to the control law-I. However, inside the region jX jo�, the maximum value of V1 decreases
with X and eventually, V1 approaches a constant value with X going down to zero. From Fig. 8(b), it can be
observed that the control signal assumes a non-trivial value at the steady state. This does not pose any great
problem in practice because the actuator can be switched off after the free vibration subsides.

4. Controlling free vibration

Stability analysis discussed above does not shed any light on the efficacy of the system as a damper.
In what follows, efficacy of the two control laws in attenuating free vibrations are analysed and compared
with the results of numerical simulations. For this purpose, a MATLAB SIMULINK model is developed
based on Eq. (24). Numerical integration of the model is carried out using the Dormand–Prince algorithm
(ode45 routine of MATLAB). As an initial excitation to the system, the initial velocity of the primary mass is
set to v0, which again by the suitable choice of x0 is scaled to unity, i.e., v0 ¼ 1. Acknowledging the fact that
the stiffness of the PZT stack actuator is a few orders higher than the usual stiffness of the primary system,
the stiffness ratio a is set to 100. As the primary system is lightly damped, inherent damping of the
primary system is considered zero, i.e., x ¼ 0. Following parameters are close to the practically feasible values:
l ¼ 0.7, rm ¼ 0.1.

Numerically simulated time histories are shown in Figs. 9 and 10 for the modified control law-I and control
law-II, respectively. From these figures, the decay of the free vibration is apparent. Comparing Figs. 9(a) and
10(a), it may be concluded that for the same parameter values, the modified control law-I is more efficient.
Fig. 9. Free vibration time history with the modified control law-I. rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0, he ¼ 25.0, and Vm ¼ 3.0.
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The effective control effort acting on the primary system may be defined as

F c ¼ aZ þ he
_Z �

l2

1� l2
aV 1. (31)

Figs. 9(d) and 10(d) show the time history plots of the effective control efforts acting on the primary mass
for the modified control law-I and control law-II, respectively. From these figures, it is clearly observed that
the control efforts acting on the primary system are nothing but a series of impulses.

The major parameters that have substantial influence on the performance of the damper are he, Vm, and e.
Suitable performance indices of the damper are the rate of decay and the decay time of the free response. From
Figs. 9(a) and 10(a), it is observed that the initial decay envelopes are linear for the chosen parameter values.
For other parameter values, the decay envelopes are found to be more complex. Decay envelopes for various
parameter values are plotted in Figs. 11(a)–(c). However, as the initial part of the decay is always found to be
linear, the initial decay rate, defined as the absolute value of the slope of the initial decay envelope, may be a
good measure of the amount of damping generated by the damper. Variations of the initial decay rate with he

and Vm are shown in Figs. 12(a) and (b) for the modified control law-I and control law-II, respectively. It is
observed that the initial decay rate increases with he and Vm. It is already noted that the modified control law-I
is more efficient compared to the control law-II. This is further confirmed by comparing Figs. 12(a) and (b).
Therefore, the control law-II is not explored further.

It is established that the control efforts on the primary system are impulsive in character. The characteristics
of the impulses depend on the rate at which the PZT actuator is expanded or contracted. With the maximum
level of the control signal (Vm) and the other parameter values fixed, the rate of contraction and expansion
depends mainly on e. Thus, it is pertinent to explore the effect of e on the rate of decay. Fig. 13 shows the
Fig. 10. Simulation result of free vibration with impulse damper with control law-II. rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0, he ¼ 25.0,

and Vm ¼ 3.0.
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variation of the initial decay rate with e. The existence of an optimum value of e for obtaining the maximum
decay rate (initial) is apparent from these plots.

Despite the initial decay rate is a feasible measure of the amount of damping produced by the damper, it is
not a good measure of the overall performance of the damper. In fact, decay changes with time and thus,
Fig. 11. Decay envelopes for the modified control law-I. rm ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0: (a) he ¼ 25, Vm ¼ 1.0; (b) he ¼ 25, e ¼ 0.1; and

(c) Vm ¼ 1.0, e ¼ 0.1.

Fig. 12. Plots of the initial decay rate with Vm and he. rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0: (a) Modified control law-I and (b) control

law-II.
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decay time is another good measure of the overall performance of the damper. In what follows, two different
types of decay time estimates are considered:
A.
 Displacement criterion: The time traversed before the displacement response of the primary system becomes
permanently less than a predefined value xd, generally low. Here, xd ¼ 0.05 is used.
B.
 Energy criterion: The time traversed before the initial energy of the primary system permanently goes below
a predefined value Ed. Here, Ed ¼ 0.01 is used.
Variations of the decay time with e are shown in Figs. 14(a)–(d) for various parameter values. Clearly,
optimum values of e that minimizes the decay time can be found.
5. Controlling forced vibration

Efficacy of the proposed impulse damper in controlling the free vibration of a single-degree-of-freedom
primary system has been established in Section 4. The damper can as well be used to control forced vibration.
Numerical simulations are carried out for a random external disturbance acting on the primary mass. The
random external excitation is generated by filtering uniformly distributed random numbers between [�R, R]
through an analogue Butterworth band-pass filter of order 8. R is scaled to unity by properly selecting the
reference displacement x0. The frequency spectrum of the generated random input is shown in Fig. 15(a). The
system is numerically integrated using the Dormand–Prince algorithm (ode45). Integration is carried out for
some time without the damper and then the damper is engaged. The time domain responses of the primary
mass are shown in Figs. 15(c) and (d) for two different values of he. From Figs. 15(b) and (c) and the frequency
domain response, Fig. 15(d), the efficacy of the damper in controlling the forced vibration is apparent. The
role of he is important to note from the frequency domain response shown in Fig. 15(d). For relatively lower
values of he, the response in the intermediate high-frequency range is increased by the damper. This is imputed
to the transient ringing of the PZT actuator during expansions and contractions. Higher value of he can
control this ringing as apparent from the reduced response in the high-frequency range.
Fig. 13. Variation of the initial decay rate with e for modified control law-I. he ¼ 25, rm ¼ 0.1, e ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0.
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Fig. 14. Variation of decay time with e: (a, b) displacement criterion and (c, d) energy criterion. rm ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0. (a, d)

Vm ¼ 1.0; (b, c) he ¼ 15.
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Numerical simulations are also carried out to explore the effect of a single damper on a two-degrees-of-
freedom primary system. Both resonance peaks are controlled by a single damper. Results are not presented
here to conserve space.

6. Controlling self-excited vibration

In this section, role of the proposed damper in controlling self-excited vibration is explored. The following
non-dimensional model of the system is considered for simulation:
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where the nonlinear function fs describes the self-exciting force and is considered here as

f sðX ; _X Þ ¼ �að _X � b _X
3
Þ, (33)

where a and b are two positive real parameters.
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Fig. 15. Forced response of the system with and without impact damper. rm ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0.005, Vm ¼ 5.0, e ¼ 0.4: (a)

Frequency spectrum of the excitation; (b) time domain response for he ¼ 15; (c) time domain response for he ¼ 75; and (d) frequency

domain response. Modified control law-I is used.
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w(t) is the random external excitation acting on the primary system. Results of the numerical simulations
for w(t) ¼ 0 are shown in Figs. 16(a)–(d). Initially, integrations are run for t ¼ 0–250 without the damper
engaged and then the damper is switched on. The system being driven by the self-exciting force fs settles down
to a periodic vibration. Figs. 16(a)–(d) confirm that this self-excited vibration can be controlled by the
proposed damper. Comparing Figs. 16(a) and (c), it may be concluded that self-excited vibration may be
controlled to a great extent (though complete quenching is theoretically not possible) by properly selecting
the value of e. Similar comparison between Figs. 16(a) and (b) reveals that the amplitude of self-excited
vibration can be progressively reduced by increasing the value of Vm. Comparing Figs. 16(b) and (d), it may be
inferred that the increasing value of he has a favourable influence on the response of the controlled system.

Efficacy of the proposed damper is further demonstrated for a more complex situation where the self-excited
system is externally excited by a random disturbance. The random excitation w(t) is generated by post-filtering
uniformly distributed random numbers between [�Rw, Rw] by an analogue Butterworth band-pass filter of
order 8 with the pass-band frequency range [0.5, 2]. Rw is scaled to 10 by properly selecting the reference
displacement x0. w(t), thus generated, is shown in Fig. 16(f). Integration is carried out for t ¼ 0–500 without
the damper and then the damper is engaged to control the vibration. Time history plot of the system response
is shown in Fig. 16(e), which demonstrates the damper’s efficaciousness. It is observed that the
amplitude of response is small for most of the time, albeit intermittent amplitude fluctuations are present.
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Fig. 16. Response of self-excited system with and without impulse damper. rm ¼ 0.1, a ¼ 100, l ¼ 0.7, a ¼ 0.1, b ¼ 0.1: (a–d) without

external excitation; (e) with external random excitation; (f) external excitation: (a) Vm ¼ 3.0, e ¼ 0.1, he ¼ 75; (b) Vm ¼ 5.0, e ¼ 0.1,

he ¼ 75; (c) Vm ¼ 3.0, e ¼ 0.4, he ¼ 75; (d) Vm ¼ 5.0, e ¼ 0.1, he ¼ 30; and (e) Vm ¼ 5.0, e ¼ 0.4, he ¼ 100. Modified control law-I is used.
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However, no specific reasons can be attributed to these intermittent fluctuations. Possibly, it is due to some
complex interaction of nonlinearity of the primary system and the random external excitation. Indeed,
increasing the voltage level reduces these amplitude fluctuations.

7. Dynamic control law

In the foregoing, it is established that the vibration of a single-degree-of-freedom system can be controlled
by series of impulses generated due to the expansions and contractions of a mass loaded PZT stack actuator.
The basic control algorithms, fundamentally conceived from the principle of impact dampers, are consisting of
two parts. The first part of the control function provides damping in the PZT actuator. The second part
commands the expansion and contraction of the actuator based on the state of the primary system. The
hysteretic controller proves to be more efficacious compared to the non-hysteretic controller. The modified
control law-I is only one example out of many possibilities of realizing the controller. The hysteretic part [29]
of the controller can alternatively be realized using the following simple dynamic control law:

V 1 ¼ KhF, (34)

where F is obtained as

_F ¼ mX ð1� signðX ÞFÞ. (35)
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The real parameter m controls the shape and the size of the hysteresis curve, and Kh is the gain of the
controller. It is easy to see that �1pFp1, and F is frequency dependent. Effects of the parameter m and the
frequency of operation on the hysteretic behaviour of F are illustrated in Fig. 17 for different sinusoidal
inputs. Numerically simulated time histories of the free vibration with the above controller are plotted in
Figs. 18 and 19 for two different controller gains. It is observed that the performance of the controller can be
improved by increasing the controller gain. Thus, in real life applications, substantial reduction in vibration
can be achieved by adaptively tuning the controller gain. Forced vibration response of the system, under the
same input as illustrated in Fig. 15(a), is plotted in Fig. 20, which demonstrates the efficacy of a dynamic
controller for the impulse damper.

It is noteworthy that the dynamic controller uses only the information of a single state (X) of the primary
system, whereas the control law-I and its modified version use the information of both displacement and
velocity of the primary system. However, practical realization of the dynamic control law is somewhat more
complex. Moreover, the hysteretic behaviour of the dynamic control law being rate dependent (unlike the
modified control law-I, which is rate independent), one should carefully choose the parameter m depending
upon the operating range of frequencies. Of course, when the controller is used in adaptive mode, this is not of
any serious concern.

8. Conclusions

In the present article, feasibility of a novel and active method of controlling vibration is proposed. The basic
mechanism mimics the best mode of functioning of an impact damper in a more flexible and versatile way.
Fig. 17. Hysteresis plots F vs. X: (a) m ¼ 10, X ¼ sin(t); (b) m ¼ 100, X ¼ sin(t); (c) m ¼ 100, X ¼ sin(5t); and (d) m ¼ 100, X ¼ sin(10t).
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Fig. 18. Numerically simulated time history plots with the dynamic controller given by Eqs. (34) and (35). rm ¼ 0.1, a ¼ 100, he ¼ 5, x ¼ 0,

m ¼ 5, and Kh ¼ 1.0.
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In the proposed method, controlled impulses, generated by expanding and contracting a mass loaded
PZT actuator, replace mechanical collisions between the primary system and the secondary masses.
Thus, the proposed system has the merit of becoming a silent and soft substitute of impact dampers.
Moreover, the requirements of physical impacts, a loose mass, and a cavity in the primary system are
circumvented.

The basic principle of the damper is demonstrated for a single-degree-of-freedom model of the primary
system. Two different types of static control laws are discussed and compared with respect to their efficacies in
attenuating vibration. The control laws are conceived with the objective of expanding and contracting the
actuator at suitable states of the primary system without the requirement of an explicit knowledge of the
global dynamics of the system. Thus, the control laws are robust in a sense that the success of these laws do
not depend on any explicit model of the system dynamics. The hysteretic control law is found to be more
efficient in attenuating vibration.

Efficacies of the proposed damper are studied for controlling the free vibration, forced vibration under
broadband random excitations, and the self-excited vibration with and without external excitations. It is
shown that the damper can control the vibration in each of these simple to complex situations. Effects
of different parameters of the controller are studied and it is shown that the performance of the damper
can be optimized by suitable choice of the control parameters. Thus, the proposed system can be used in an
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Fig. 19. Numerically simulated time history plots with the dynamic controller given by Eqs. (34) and (35). rm ¼ 0.1, a ¼ 100, he ¼ 5, x ¼ 0,

m ¼ 5, and Kh ¼ 10.
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adaptive way to control vibrations of lightly damped flexible structures without any explicit knowledge of the
system model.

The use of dynamic control law to generate the hysteretic control commands for expanding and contracting
the actuator is also considered. In the dynamic control law, the hysteretic part of the control command is
governed by a first-order nonlinear ODE.

A conventional active vibration control system utilizes full/partial state feedback and often the control law
demands the estimation of the model of the system. Successful estimation of the model calls for sufficient prior
information regarding the global dynamic characteristics of the primary system. Thus, the range of
applicability of the conventional active control system is rather limited. However, the strongest advantage of
the proposed scheme is that the control law does not assume any particular model of the system and only the
instants of the zero-crossings of the displacement of the primary system are required. Thus, in principle,
measurements, or estimation of the states (except in the case of the dynamic control law), as well as a
mathematical model of the system, is not required for the successful operation of the control. Various
examples have amply demonstrated that a single control law is capable of controlling the vibration of a large
class of systems.
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Fig. 20. Forced vibration response with the dynamic controller. rm ¼ 0.1, a ¼ 100, l ¼ 0.7, x ¼ 0.005, he ¼ 25, Kh ¼ 1, m ¼ 5: (a)

displacement time history of the primary system and (b) frequency response plot.
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Finally, it may be mentioned that as the proposed system utilizes a PZT actuator, the compactness of the
actuator allows the proposed method to be practically implemented in various length scales ranging from
macro- to microsystems, for example, vibrating structures in microelectromechanical systems and various
other micromachines.
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